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Presented in this article is a convenient method for determining static or 
propagating fields due to a slab-confined source distribution. The “propagating” 
version was developed with a view to studying thin plasma layers (such as the 
geomagnetic tail or current sheets for fusion machines). The “static” version has 
been in use for several years to study anomalous plasma diffusion, or electrostatic 
sheath problems. However, there are numerous other applications: fluid-dynamics, 
diffraction, radiation from phased arrays, to name but a few. 

The significant feature of the geometry is that the source is infinite in two 
dimensions ( y and z) and in time (the case of radiation at steady frequency is of 
interest), so that Fourier transforming is the obvious treatment for these three 
variables, but in the remaining single space dimension x, only a finite range has to 
be covered, with free-space boundary conditions at each end (see Fig. 1). 

Fourier-transforming in x is not appropriate: a progressive integration of the 
ordinary differential equation (Y = potential, u = source): 

(d”?P/dx”) + w2Y = (T (1) 

is faster and allows the imposition of free-space boundary conditions with great 
ease. For the two-dimensional Poisson operator, our method therefore resembles 
that described as “FACR” in Hackney’s survey [l]. 

For the one-dimensional wave equation, w is the frequency, if one uses units 
such that the phase velocity is unity. For three-dimensional waves with 
ei(kuv+k+--wt) as the factor designating the Fourier component under consideration, 
we define w2 as a replacement of w 2 - kg2 - kz2. In this case one can have negative 
o2 (which one may prefer to write as -k2 for better familiarity), and the case of 
Laplace’s operator, or the Poisson equation, is then included. 

The x-interval is broken into finite steps smaller than l/n of the smallest wave- 
124 

Copyright 0 1973 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



INVERSION OF HELMHOLTZ OPERATOR FOR SLAB GEOMETRY 125 

(b) 

(cl 
FIG. 1. Potential due to slab-confined source: (a) outward propagating, o* > 0; (b) sym- 

metrically sloping, ~2 = 0; (c) outward decaying, w* < 0. 

length to be handled (i.e., smaller than 2/w). The numbering should be odd, i.e., 
Y and CJ are recorded at x-values: 

. . . _ $Ax, - #Ax, - &Ix, &Ix, #Ax, SAX ..a 

with x = 0 midway between the outer bounds of the source distribution. We use 
Ax as unit of length. The finite difference equation corresponding to (l), 

‘u,,, + yn-I - (2 - w3ul, = on, (2) 

could, in principle, be solved by Gauss elimination, but a marching method allows 
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us better to apply the boundary conditions at &co. With a view to convenient 
indexing in Fortran, let us define two (complex) arrays 

Yl’ = Y(i Ax), Y1- = Y(-&Ax) 
ul,+ = Y($ Ax), Y2- = Y(-$Llx) 

etc., 

and similarly for (T. Then (2) is the correct recurrence relation for both Y+ and Y-, 
provided one interprets: Y,,+ = YI-, YO- = ‘u,+. 

We let n = N be the largest index for which u,+ or un- is nonzero, i.e., the source 
distribution is confined to 1 x 1 < Ndx. To solve (2), we factorize: 

(Yn+1 - efKYn) - e-*K(yl, - efKYn-,) = un , 

where & - e-*K = 2 - o2 on sin(lc/2) = w/2. Note that K is either real (our 
restriction on Ax ensures that w is less than 2) or pure imaginary (w2 negative). 
Defining 

@, = Yn - eiKYnml , 

one first solves for @,, by an inward march of 

Gn = (@n+l - a,) e*K fromn = Ndownton = 1, 

and then for ul, by an outward march of 

(3) 

Yn = @,, + eiKYnmI from n = 1 to n = N. (4) 

The question is how to begin these marches: what do we use for @PN+l in (3) and 
what do we use for Y, in (4) ? Suppose we took the recurrence relation out into the 
source-free region n > N, where ula = 0. Then (3) would have the solution 
@, = Ae-fKn where A = const and, inserting this into (4), one gets 

yn = Ae-*K”/(l - e2*“) + B&n, (5) 

where B is some other constant. Here the first term, coupled with the time factor 
e-‘ot, represents an incoming wave not admissable for causality reasons if Y is to 
represent the potential due to the source u alone (Fig. la). Hence A = 0 and 
an = 0 in the source-free exterior, so that 

!D -0 N+l - (6) 

for the start of the inward march. 
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In the case where w2 is negative, as it certainly will be for the 2- or 3-dimensional 
Laplace/Poisson problem, we choose a positive imaginary o so that we get a 
positive imaginary K. This has the effect of stabilizing both marches (3) and (4), in 
that each next value is obtained by multiplying with a number less than unity: 
errors are knocked down. It also results (Fig. lc) in the exclusion of the first term 
in (5) which represents an outward increasing potential. The choice A = 0 and (6) 
for @N+~ is the correct choice, albeit for different reasons. In this case, incidentally, 
one would not represent the multiplier in (3) and (4) as an exponential but as that 
solution of the quadratic (eiK) + l/(ei”) = 2 - w2 which is less than unity. 

What we have found so far applies both to the potentials Y+ with their sources 
uf on the right and to the potentials Y- with their sources G- on the left. The 
corresponding @+ and @- can both be marched inwards simultaneously starting 
from @$+:+1 = 0. 

To start the outward march, we determine Y,+ and Y,- from the consistency of 
the two conditions 

Yo+ = Yl- = Qi,- + &Yo- 

YD- = YI+ = C&f + eiKYo+ 
(7) 

i.e., from joining the solutions in the middle of the slab. From (7) we find 

Y,+ = (t&+ + e%P,-)/(l - e2iK) (8) 

Yl- = (Q1- + e%&+)/(l - ezi”) (9) 

which allows us to begin the outward marches of ‘jr/,+ and Y,- now with n = 2. 
The case of the vanishing denominator is taken up below. 

The program, then, consists of the reverse loop (3) initialized by (6) with + 
and - superscripted variables processed simultaneously, then the pair of statements 
(8,9) and finally the forward loop (4) again with + and - variables processed 
simultaneously beginning with n = 2. In the loops, Qn% can overwrite 0~5 and Yn* 
can overwrite Qla*. 

Here, as in the FFT’s for transforming the variables y, z, and t, one 
can avail oneself of a trick to speed up the complex multiplications in those 
machines which take longer to multiply than to add: Along with S = sin K 

one stores T = tan(K/2) rather than C = cos K. The complex multiplication 
U + iV = (C + is)* (X + iY) (four real multiplications and two real additions) 
then becomes: 

U’=X-T*Y 

v= Y$-S*U 

U=U’-T*V 

581/12/r-9 
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(three real multiplications and three real additions). The prime may be omitted 
in F0rtran.l On an IBM 360/65 this gives a 15 ‘A saving per complex multiplication. 

The case of the vanishing denominator in (8,9), K = 0, has still to be dealt 
with. The one-dimensional Poisson problem falls into this category. 

Outside the source distribution Y must be linear in this case (Fig. lb). @ repre- 
sents the potential gradient and one cannot discriminate against a nonzero gradient 
for n > N + 1. Let us, nevertheless, build up @+ and @- by simultaneous inward 
marches starting with @$+r = 0. These inward marches may then finish with 
possibly contradictory values G1+ and @r- in that (7) now states 

q+ = ?Po+ - ‘u,- (10) 

al- = Yo- - !Po+. (11) 

We note from (3) with eiK = 1 that -@r+ and -@r- represent the totals of the 
source strengths (“charge” in the electrostatic interpretation) on the right and 
left respectively. Thus (10) and (11) are compatible only provided the total source 
strength overall is zero. Otherwise, we must correct all CD’S by subtracting a uniform 
gradient y given by 

Y = +m+ + @,-I, 

from all Q-values created in the inward march. One does this by subtracting y at 
each step of the outward march. 

The start of the latter is not uniquely determined, since one can choose an 
arbitrary zero of potential, but the choice 

Yo+ = g&+ - tD1-) = -Yo-, 

compatible with (10) and (ll), is as good as any: it places the potential zero in 
the middle. 

The slopes of potential outside the source distribution are now the same in 
magnitude and opposite in direction on the two sides of the slab: the potential is 
that due to the slab alone in free space, symmetric at large distances (Fig. lb). 

Apart from its intrinsic convenience, the marching method described here 
greatly facilitates the introduction of internal boundaries at fixed potentials (e.g., 
an array of finite-diameter grid wires in the two-dimensional electrostatic problem). 

In this case one uses the “capacitance matrix” method developed at Stanford 
and described by Hackney [l]. One solves without paying any attention to the 

1 The symbol “*” is here used to indicate multiplication, in order to emphasize that we are 
concerned with a computing algorithm. Note incidentally that the Fortran statement Z = E * Z 
whereZ=X+iYandE=C+iScanbeexecutedasX=X-TT*Y,Y=Y+S*X, 
X=X--T*Y. 
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internal boundaries in the first place and one ignores any possible surface charges 
that would develop on the internal conductors. This is step “A.” Then, in step “B,” 
one determines the amounts by which the resulting surface potentials fail to meet 
the imposed conditions. In step “C” one multiplies the potential deficiencies into 
the capacitance matrix to determine the required surface charges and in step “D” 
one solves the potential problem again, this time including the surface charges. 

The point is that one can place the middle of the slab, x = 0, at or near the 
median plane of all internal boundaries, so that the latter cover only a minimal 
range from the center rightward and leftward (see Fig. 2). In step “A” one now only 

FIG. 2. Marches in the presence of internal boundaries: (A) before knowledge of surface 
charges, (D) after evaluation of surface charges. 

marches inwards and part of the way outwards, namely to the outermost point 
of the internal boundaries. Only for this last short range need one Fourier-invert 
the Y-values in order to determine the potential deficiencies in step “B.” For 
step “D” one can then pick up the original inward march at the edge of the internal 
boundaries, make a brief double march in the innermost region, then create the 
‘P’s all the way to the end of source distribution (see Fig. 2). 

The algorithms and special tricks described in this note have all been used and 
tested. Further applications, particularly to cylindrical (rather than slab) geometry, 
using conformal mapping, and to radiation, are in progress. 
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